Posted on

cbd and depression study

Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor.

Cbd and depression study

Furthermore, a significant discrepancy is observed between the recorded dosages of oral CBD in RCTs and dosages in real-world settings. The average daily CBD dosage authorized at our clinic (11.5 mg) is closer to other observational studies (Gulbransen et al. 2020) compared to what is seen in RCTs (up to 1000 mg for a single dose) (Larsen and Shahinas 2020). The presence of THC and other cannabinoids in CBD-rich products may affect the outcomes in this study. The majority of RCTs investigated single-dose administration of CBD making it difficult to compare observed treatment outcomes with chronic dosing clinical settings. Importantly, medical cannabis products are generally not covered by most insurers and patients rely on out-of-pocket payments. The cost of CBD remains very high globally, approximately $CAD 5–20 per 100 mg (Canada Go 2021; Eisenstein 2019; Canada 2020). Availability of reliable cannabinoid testing in certain international jurisdictions is also limited. The gap between effective doses demonstrated in RCTs and the actual affordable doses demonstrated by RWE mandate the need for a precise pricing and marketing strategy at the initiation of any drug development process.

The addition of THC to CBD during FUP1 did not produce any effect on ESAS-r scores at FUP2 in this analysis; however, the magnitude of the difference between groups is small. The examination of treatment regimen has been seldom addressed in the literature and further development is required to inform guidelines for prescription and refinement of clinical practice.

Mean scores and standard deviation (SD), as well as percentage, where appropriate are presented for each variable. All analyses were performed on each ESAS-r symptom separately through the data analytics software R v4.0.2. An initial analysis compared the overall ESAS-r scores between each visit no matter the severity of the group, and looked at the role of product group (CBD/THC:CBD vs CBD/CBD group) (between-factor). Tukey HSD post hoc test was used to confirm where the differences occurred between groups.

RWE from retrospective analyses and patient registries shows that CBMs are used for pain (chronic, neuropathic), mental health conditions, cancer-related symptoms (nausea, fatigue, weakness), HIV/AIDS, and neurological conditions (Bonn-Miller et al. 2014; Gulbransen et al. 2020; Lintzeris et al. 2020; Lucas and Walsh 2017; Sexton et al. 2016; Waissengrin et al. 2015). Symptom control is the primary reason for use of CBM, with most patients looking to address unalleviated symptoms, perceived symptom intensity, and burden on health-related quality of life independently of primary diagnosis (Sexton et al. 2016; Waissengrin et al. 2015; Baron et al. 2018; Purcell et al. 2019; Swift et al. 2005; Webb and Webb 2014). The Edmonton Symptom Assessment Scale-revised version (ESAS-r) is a validated scale to assess symptom burden developed for use in oncology and palliative care (Hui and Bruera 2017), it has relevance to medical cannabis care as patients are often treated for similar symptom management (Good et al. 2019; Pawasarat et al. 2020). Specifically, studies showed self-perceived improvement in ESAS-r emotional symptoms (anxiety and depression) scores following CBM treatment in oncology patients, while pain and wellbeing symptoms showed no improvement (Good et al. 2019; Pawasarat et al. 2020). Yet, RWE on CBD-rich products is scarce (Goodman et al. 2020; Shannon et al. 2019). In addition, although careful titration and treatment adjustment after initiation is critical to symptom improvement and adverse effects care, current literature has failed to address this issue.


Treatment adjustments occur at follow-up visits as a result of lack of effectiveness, presentation of adverse effects, or social or economic barriers. Adjustments may include a change of the recommended CBD-rich product, method of administration, dosage, or a change in product formulation such as the introduction of THC:CBD-balanced or THC-rich products. We investigated the change from CBD-rich to THC:CBD products during FUP1 by forming two groups based on their product adjustment at FUP1 (CBD-rich vs THC:CBD). Products at FUP1 reflect those recommended at the visit. Therefore, the adjusted treatment affects only the evaluation at FUP2.

RCTs on CBM and pain symptoms provide inconclusive results; however, several report that treatments of THC and CBD have some benefit for pain management (Häuser et al. 2018; Russo 2008; Prosk et al. 2020). Our results are largely novel as research on the effect of CBD on pain control is very limited (Boyaji et al. 2020). The reduction in reported anxiety may also contribute to the improvement in pain perception.

In this study, we investigated treatment with CBD-rich products within a dedicated clinical setting in Quebec, Canada, and the effects on a very common clinical symptom expression of pain and comorbid anxiety and depression symptoms, as well as the effect on overall wellbeing. We also examined the relevant clinical effects that were observed when CBD-rich treatments were replaced by THC:CBD-balanced products at subsequent follow-up visits.


A total of 1095 patients were seen at the four clinic sites during the study period. Out of those, 715 were eligible for the study (at least 18 years old and initially treated exclusively with CBD-rich products). A total of 279 patients with ESAS-r scores and product information at FUP1 were analyzed (190 (68%) female, mean age = 61.1, SD = 16.6). The analyzed sample did not differ from the study-eligible group in terms of age, sex, or THC and CBD initial doses (all ps > 0.4). Table 2 outlines patient sample size and demographic information for each symptom and treatment group. Two hundred and ten (75%) patients were prescribed CBD-rich products to treat chronic pain, 19 (7%) for cancer-related symptoms, 21 (7.5%) to treat neurological disorders (Parkinson’s disease, multiple sclerosis, and drug-resistant epilepsy among others), 8 patients for inflammatory disease (arthritis), 10 for gastrointestinal disorders (Chron’s disease, inflammatory bowel syndrome, ulcerative colitis), 2 for anxiety, 1 for depression, 2 for headaches, and 6 unclassified. The chronic pain category included all medical indications for which pain was the main symptom such as but not limited to fibromyalgia, spinal stenosis, and chronic low back pain. Overall, 116 (41.6%) patients adjusted their prescription by adding THC at FUP1 (either to a THC:CBD-balanced combination or a THC-rich treatment). Two hundred and three (73%) patients had moderate/severe ESAS-r scores on at least 2 of the examined symptoms, 57 (20%) on three, and 75 (27%) on all four symptoms. Twenty-nine (10%) patients report no moderate/severe symptoms; these people may use CBD for other ESAS-r symptoms not examined here (shortness of breath, tiredness, nausea, drowsiness, appetite). There was no statistical difference on either age, sex, or THC and CBD initial doses between the patients who completed one FUP versus those who completed two FUP (all ps > 0.1).

Discrepancies still exist regarding the anxiolytic effect of CBD. Some RCTs indicate an anxiolytic effect of CBD upon experimentally induced scenarios (Bergamaschi et al. 2011; Zuardi et al. 2017; Bhattacharyya et al. 2010; Skelley et al. 2020); however, these findings are difficult to replicate (Larsen and Shahinas 2020; Hundal et al. 2018; Crippa et al. 2012). This reinforces our findings that CBD may have a differential effect depending on anxiety severity. Regarding the effects of CBD on depression symptoms, further research is required to draw conclusions (Khalsa et al. 2020; Schier et al. 2014; Turna et al. 2017).